

Drying and Torrefaction of Coal/Biomass by COMB Technology

KIER

The KIER, a global energy innovator, does its best in pursuing its mission to invent world-class energy technologies based on open innovation, life-cycle research quality assurance, participatory and open communication. Therefore the KIER will become the best energy technology R&D institute in the world, contributing to the creation of wealth and improvement of quality of life for the people.

13th July, 2017

<u>Sihyun LEE</u>,

Korea Institute of Energy Research

SOLID FOSSIL FUEL FIRING / CO-FIRING

BIOMASS FIRING / CO-FIRING

Low Rank	USA	Germany	Australia		ermany Australia Indonesia		nesia
Coal	Fort Union	Rhine	Norwell	Loy Yang	Wara	Milia	
Moisture*	37.2	55.7	60.1	61	32	35	
Volatile**	44.6	53.1	49.4	51.9	36	38	
Ash*	6.2	2.1	1.3	0.5	2	3.3	
HHV(kcal/kg)	4,200	2,270	2,533	2,630	4,800*	4,995*	

1970 - 1980

Source: Kalle Nuortimo, Amec Foster Wheeler, 8th ICCCT, 2017

Coal

- Limitation of high quality coal supply
- Huge reserves of low rank coal : high moisture content and spontaneous combustion

Biomass

- Reducing the CO2
- Biomass market changed to global market
- Large scale power generation of biomass alone and co-firing
- Increasing interest to applying agricultural biomass & waste

Increasing use of low rank coal & biomass

 Low efficiency for power generation due to low calorific value and high moisture

Need energy efficient upgrading technology (Drying & torrefaction)

2000 AGRO

RECYCLED WOOD/

1990

Low Rank Coal Drying Technologies

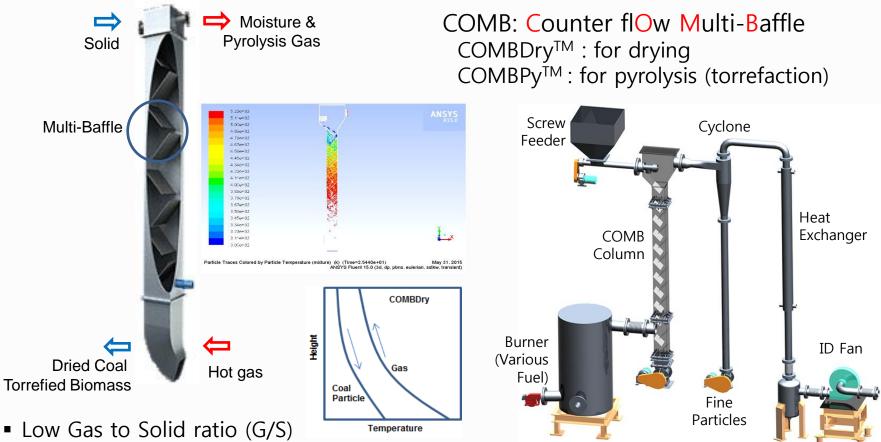
DRYLIG : Project overview

KIER



Main objective:

• Adoption of pre-dried lignite utilization towards increased flexibility, improved efficiency and environmental and economic performance


Biomass Torrefaction Technologies

KIER

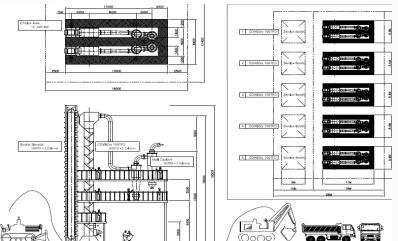
- Short residence time (~5min)
- Constant temperature difference (driving force) along the column
- Simple, Flexible & Movable

Drying High Moisture Low Rank Coal

Purpose

Low rank coal upgrading with drying and stabilizing, securing coal for energy security

Progress and Plan


 Collaboration network built to jointly develop low rank coal upgrading technology at Indonesia, China, and Australia. Demonstration site selection on a coal mine and power plant underway in each country

Achievement and Future Prospects

 Launching 2017 International Cooperation Project with Australia (Monash University) to develop Victorian Brown Coal drying

20kg/hr, 50kg/hr BSU COMB facility

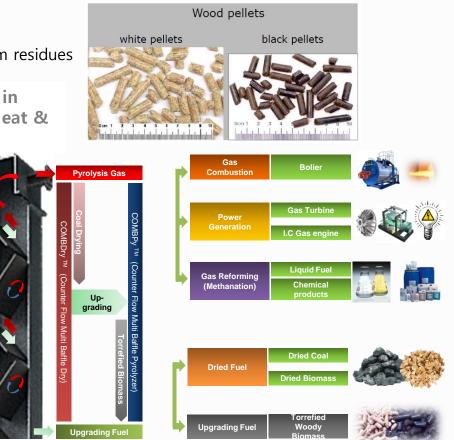
Commercial design model for Counter flOw Multi-Baffle (COMB) facility

Biomass Torrefaction : COMBPy[™]

White pellet & Black pellet from EFB & OPT

KIER

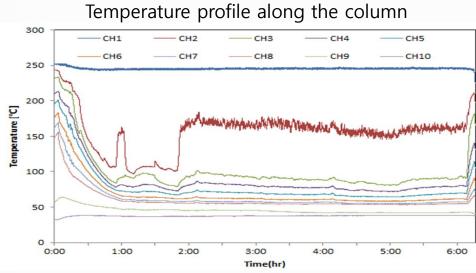
Upgrading palm residues


Indonesia palm residues upgrading and utilization in combustion and gasification for CHP (Combined Heat & Power)

Progress and Plan

- Demonstration and site selection on a POM (Palm Oil Mill) underway in Lampung,
- Indonesia
 Discussion linkage program with Indonesia
 for distributed power generation project

Achievement and Future Prospects


Produce PDP (Process Design Package) for industrial demonstration COMBPy/CHP plant that will be installed in 2018

Concept of COMB. Tech. for drying and torrefaction

Results : Coal Drying

KIER

Burner outlet (column inlet) : 250° C Average bed temperature : 80° C Column outlet : 50° C Chinese Inner Mongolia Lignite

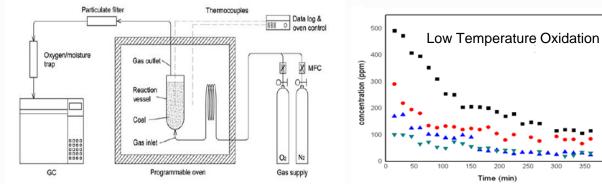
Proximate analysis (wt%, ar)	Raw coal	Dried Coal
Moisture	36.0	11.2
Ash	3.6	5.4
Volatile matter	32.3	41.3
Fixed Carbon	28.0	42.1
Calorific value (HHV, kcal/kg, ar)	4,230	5,760
Ultimate analysis (wt% adb)		
Carbon	44.3	60.6
Hydrogen	6.77	5.03
Nitrogen	1.85	1.93
Sulfur	0.04	0.06
Oxygen	43.3	29.38

Imported coal to EWP	Proximate Analysis (%, wt)				Calorific Value
	М	VM	FC	А	(kcal/kg)
Raw Coal	24.98	35.18	36.99	2.85	4,180
COMBDry_150	11.42	41.04	42.16	5.39	5,640
COMBDry_200	10.49	41.39	43.48	4.64	5,742
COMBDry_250	7.2	42.6	45.04	5.16	6,033

Results : Biomass Torrefaction

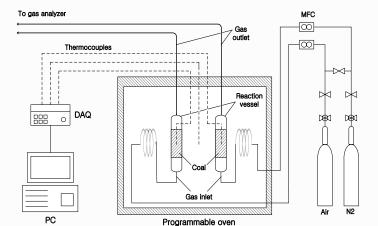
KIER

Malaysia	Proximate Analysis (%, wt)				Calorific Value
Biomass (Sawdust)	М	VM	FC	А	(kcal/kg)
Raw Biomass	19.04	64.31	16.06	0.59	3,892
COMBPy_250	2.65	77.55	19.25	0.65	4,569
COMBPy_280	1.69	77.18	20.35	0.78	4,699
COMBPy_300	0.92	76.03	22.33	0.93	5,015
COMBPy_320	0.7	70.62	27.62	1.07	5,088
COMBPy_340	0.6	69.02	29,25	1.13	5,112

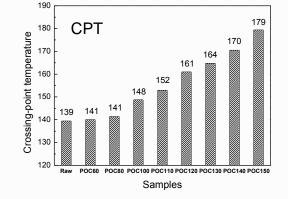

Optimization for various types of biomass with different morphology

Activities of KIER's Clean Fuel Lab.

- Proximate/Ultimate/Calorific Value
- TGA/DTA (thermal properties)
- Ash analysis, ash behavior


KIER

- Functional Groups (FTIR) analysis
- CPT (Cross Point Temperature)/LTO (Low Temperature Oxidation) measurement for spontaneous combustion
- Water resistance/water re-adsorption after drying
- Briquetting & Strength measurement (drop/tumbling)

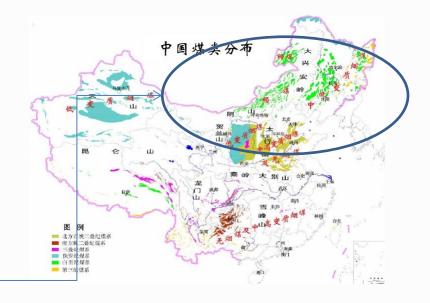


10

Apparatus for Low Temperature Oxidation

CPT Measurement Apparatus

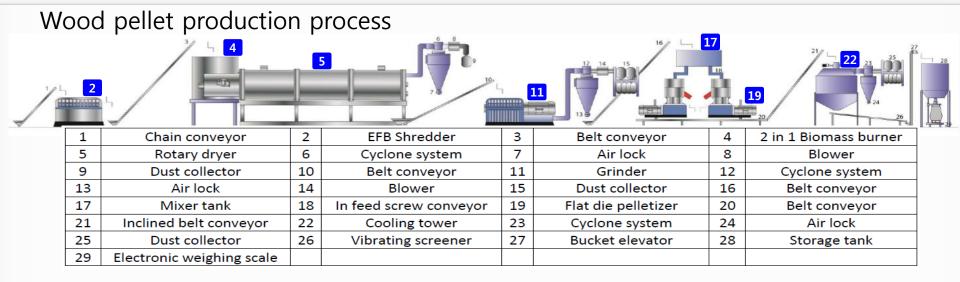
50kg/h COMB BSU (China, HIT, '15) Target coal: High moisture Inner Mongolia Lignite



Product Rotary Valve Dust Rotary Valve

7 Temp measure (11 Points) Pres. measure (5 Points)

HIT: Harbin Institute of Technology



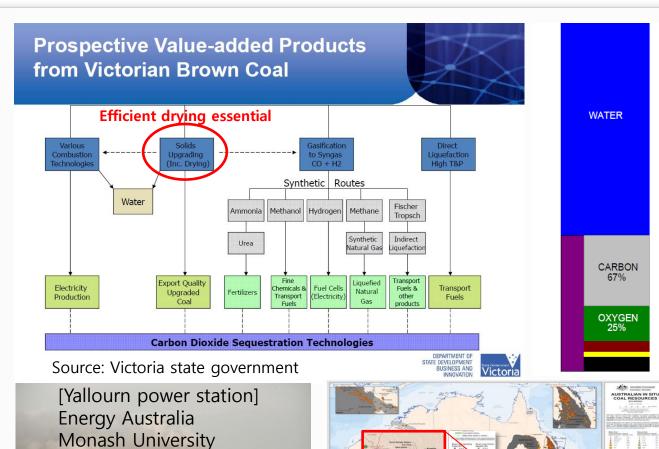
HIT conclusion:

The flue gas temperature of boiler was about 200°C in actual power plant, the experimental condition in this research was in accordance with the actual situation, so the results were applicable to technical upgrading in actual power plant.

KIER Cooperation Indonesia

Palm kernel Pressing will produce Crude Palm Kernel Oil (CPKO)

COMBDry : Drying to make palm pellet (20MJ/kg) COMBPy : Torrefaction to make black pellet (26MJ/kg)


Indonesia partners

- ARDEMR: Agency of R&D for Energy and Mineral Resources
- tekMIRA
- Lampung University
- ITB: Institute of Technology Bandung

Cooperation Australia

KIER

The proposed project involves tests at the power plant site to prove the drying capability of COMBDry

BCIA support project:

COMBDry Technology

Development of

Drying Using

(2017)

Sulphur & Nitrogen >1%

Hydrogen 5%

Ash ~2%

Biomass and Coal

% weight moisture

60-70%

Source: http://www.minerals.org.au/

KIER developed COMB. Technology : Counter flOw Multi Baffle Technology

- Coal drying and mild pyrolysis for coal stabilization (reducing self-heating propensity)
- Torrefaction of woody/herbaceous biomass to make black pellet (26MJ/kg)

Status

- 1ton/day (50kg/hr) BSU (Bench Scale Unit) operation in Korea
- International cooperation project
 - HIT (Harbin Institute of Technology), China : Inner Monglia Coal Drying
 - Monash University, Australia : Victorian brown coal drying

Future Plan

- Demonstration at Australia for coal drying (power plant site, 2018)
- Demonstration at Indonesia for coal drying (mine mouth) and biomass torrefaction (POM site, 200kg/hr, 2019)

Thank you!

KIER

Sihyun LEE, Ph.D. Clean Fuel Laboratory Korea Institute of Energy Research LSH3452@kier.re.kr +82-42-860-3452 +82-10-3444-0599