Highly Efficient DVB-S2/RCS2 VSAT Platform For Next Generation Satellite System

2016.6.

ManKyu Park neomkpark@etri.re.kr

Research Institute

2nd Generation VSAT Tech.

Background

• The current emerging applications in Internet require large bandwidths and quality of service(QoS) guarantees for up and down links

Broadband access, IP multicast, media streaming, content delivery servic

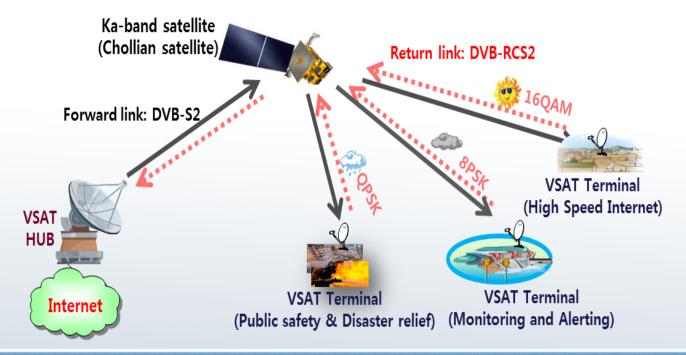
	Conventional VSAT	Next Gen. VSAT	Comparison
Freq. Bandwidth	Narrow band Ku	Ku + Broad band Ka	Supported Broad band service using Ka band
Service Bandwidth	Under 10 Mbps Only CCM mode	Under 100 Mbps ACM mode support	Improving transmission efficiency by more than 30%
Supported data type	Short message and voice message	Multi-media data	Internet contents have high resolution
Service	Only Voice service	Voice+ Multi-media data service	HD multi-party remote conference service supporting HD resolution
	Low speed data service	High speed data (up, down) Satellite backhaul service for 2G/3G	Social network service (SNS) require the high speed service via up and down links

 To support those requirements, the DVB consortium approved the specification of the next generation multimedia satellite communications system in March 2011

2nd Generation VSAT Technology

DVB-RCS vs DVB-RCS2

• The primary goals of DVB-RCS2 were to achieve major advancement in TDMA burst modem performance at multiple levels, including:


- New high-efficiency modulation types and FEC methods (ModCods)
- The implementation of Adaptive Coding and Modulation (ACM) per burst
- Improvements in link availability for low Signal-to-Noise Ratio (SNR) environments
- Improvement bandwidth efficiency generally but especially the intermediate range of SNRs
- Improvements in the return link encapsulation (RLE) for variable length IP packets

	DVB-RCS1	DVB-RCS2	Effectiveness
Modulation	Linear Modulation QPSK only	Linear Modulation QPSK/8PSK/16QAM	High efficiency and High speed (2bit/Hz →4bit/Hz)
		Continuous Phase Modulation (CPM)	Small terminal
Framing	Pre-amble only	Pilot symbol insertion, Pre-amble and mid-amble support	Robust frame synchronization support
Coding	Convolutional code, Turbo code (8 state)	Linear: Turbo Phi code (16 state)	Robust channel coding
		CPM: CC/eBCH code	support
IP packet processing	ATM , MPEG (Fixed length encapsulation)	RLE (Variable length encapsulation)	High efficiency support

ETRI VSAT System(1/3)

• ETRI VSAT system is DVB-S2/RCS2 based next-generation VSAT (Very Small Aperture Terminal) system

- Support High-performance DVB-RCS2 burst modem with higher order MODCODs(i.e. both 8PSK & 16QAM) and the most advanced FEC technologies
- Highly-efficient MAC layer protocol (RLE) scheme is used

ETRI VSAT System(2/3)

Main Features

Link availability can be dramatically increased with ACM and ACS technologies

- QPSK, 8PSK, 16QAM modulation(DVB-RCS2 compatible)
- 16-state duo binary Turbo-code technology(DVB-RCS2 compatible)
- Two-way Rain Fade Mitigation technology
 - Forward link : UPC(Uplink Power Control) + ACM(Adaptive Coding & Modulation)
 - Return link : Power control + ACM + ACS(Adaptive Carrier Selection)

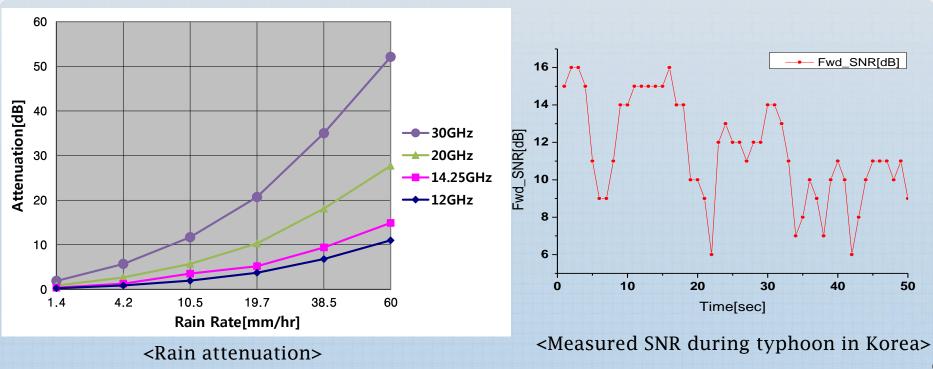
• Variable length data encapsulation and decapsulation technology

Return Link Encapsulation(RLE) protocol at link layer is used for IP packet processing

Specifications

	Forward link	Return link
Standard	DVB-S2/S2X compatible	DVB-RCS2 compatible
Modulation	QPSK, 8PSK,16APSK,32APSK	QPSK, 8PSK, 16QAM
FEC	LDPC/BCH	16-state Duo-binary Turbo code
Roll-off factor	0.05/0.1/0.2/0.25/0.35	0.2
Symbol Rate	~80Msps	{0.5/1/2/4/8}Msps
IP Encapsulation	MPEG-2 TS, GSE	RLE
Rain Fade Mitigation	UPC+ACM	Power Control +ACM+ACS

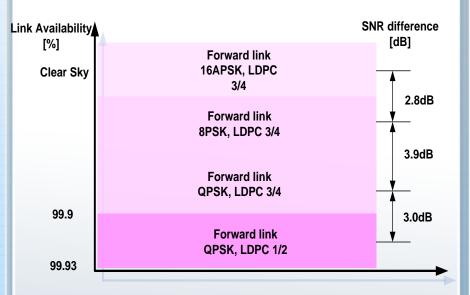
Rain Fade Mitigation Technology(1/3)


Rain attenuation analysis

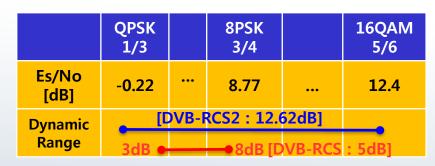
Rain attenuation

Ku-band(14GHz) : 15dB, Ka-band(30GHz) : 52dB

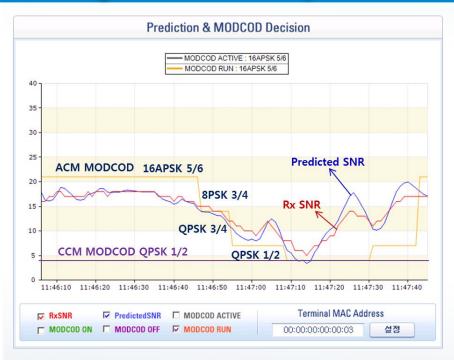
• Rain attenuation rate

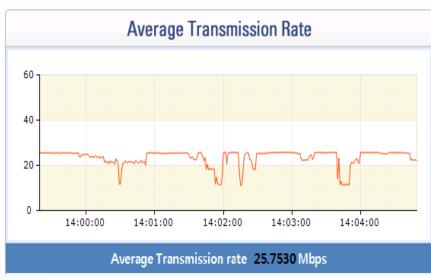

Ku-band : ~1dB/sec, Ka-band : 3~5dB/sec

Rain Fade Mitigation Technology (2/3)


Forward link

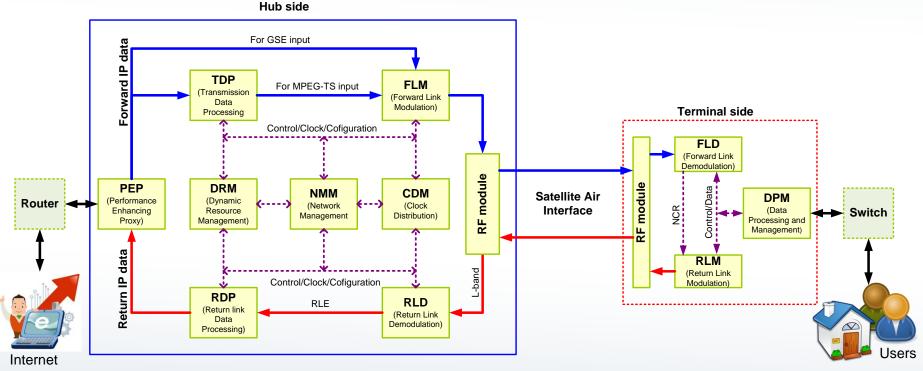
 ACM scheme is operated by automatically adapting the modulation type and FEC rate depending on the link condition


Return link


- In order to overcome the rain fading Power control, ACS & ACM are applied
 - Firstly, closed loop power control
 - Secondly, ACM in same symbol rate
 - Finally, ACS(Symbol rate is changed)
 - By use of multiple techniques, the total dynamic range of VSAT system is over 20dB

● Symbol rate change(4Msps → 0.5Msps): 9dB

Comparison of System Throughput



Results of System Throughput

- System throughput @ CCM Mode : 10Mbps (10Msps QPSK, LDPC ½)
- System throughput @ ACM mode : 30Mbps (10Msps)

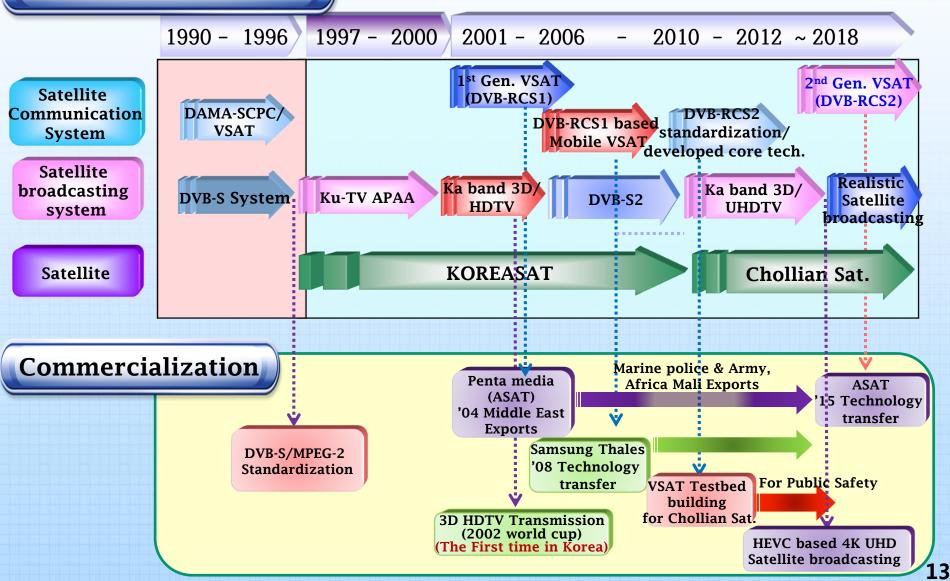
Modular Structure

- RDP (Receive Data Processor)

- RLD (Return-Link Demodulator)
- DRM (Dynamic Resource Manager)
- CDM (Clock Distribution Module)
- FLM (Forward-Link Modulator)
- NMM(Network Management Module)

- FLD (Forward-Link Demodulator)
- RLM (Return-Link Modulator)
- DPM (Data Processing Module)

System Configuration


ETRI Hub System and Terminals

<Hub System>

Development and Future plan (1/4)

Development Activities

Development and Future plan (2/4)

Operation of public service based on DVB-RCS1 VSAT system

KMA

KIOST)

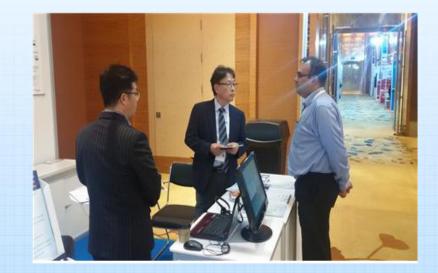
Service Status

芕 К М А

- Korea Meteorological Administration
- Current ~ 2010
- Weather station in Baengyeong island
 - To report meteorological data and media stream from CCTV

- Korea Institute of Ocean Science & Technology
- Current ~ 2014
- Research station in Sochung island
 - To transfer sensor data from sensor node on the sea

- Ministry of public Safety and Security (Sejong city)
- Current ~ 2010
- Government Complex in Sejong
 - It will be used an emergency communication network when terrestrial network has problem


Chollian sat.

국민안전처

Hub system at Daejeon

Development and Future plan (3/4)

Exhibition and Press release

<CommunicAsia2015 Exhibition@Singapore>

디자트티임스

2016년 05월 13일 금요일 010면 경제

성동신 모뎀 핵심기술 개발

내는 도신을 가는하게 하는 기술이 개발된다 세대의 최대 송신속도였던 4월 수준에 스테마이즈(대표 한방수)와 공동으로 미래 장조과학부 '책동

E 20Mbps급 초고속 위성인터넷 서비스가 가능한 2세대 위

년 05월 13일 금요일 024면 전국

개발

지상망 붕괴되도 위성통신 끊김없이 '빵빵

ETRI, 시스템 국산화 성공 저 날씨따라 전송속도·방식 변경 지진 등 재난구호에 활용 기대

남씨 변화에 따라 전송속도와 전송 을 바꿔가며 끊기지 않고 안정적 으로 위성통신 서비스를 제공할 수 있 志소에기지금과 위성 시스템이 FUERD

발했다고 12일 밝혔다.

터마이즈가 각각 맡았다.

기슈용 이용하면 호수나 지지 5 ET 긴급 재난으로 기존 통신망을 사용할 수 없을 때 위성을 이용해 통신서비스 FTRE PERIOD 24IDE VSAT (#.6.8

20배야급 조소 영기지국·위성 시스템 날씨에 따라 전송 방식·속도 변경

국내 연구진이 중소기업과 함께 위성통신 시 스템을 상용화 수준으로 개발하는데 성공했다. 한국전자통신연구원(ETRI)은 20배6급 초소형 기지국(VSAT) 및 단말기 통합 위성 시스템을 개

통신 모뎀과 접속 절차는 ETRI, 상용급 초소 형기지국(VSAT) 시스템 개발 및 검증은 넷커스

넷커스터마이즈는 지난달 Ka대역의 천리안

위성을 이용해 캠코더 영상 및 CCTV 등 영상전

소 기허고 이디네 저희 이디네 저소 드 디아하 이

서 20km 1으로 연그레이드했다. 10kk

9의 동영상을 4초에 보낼 수 있는 도디에, 통신 방식은 시분한다중점소

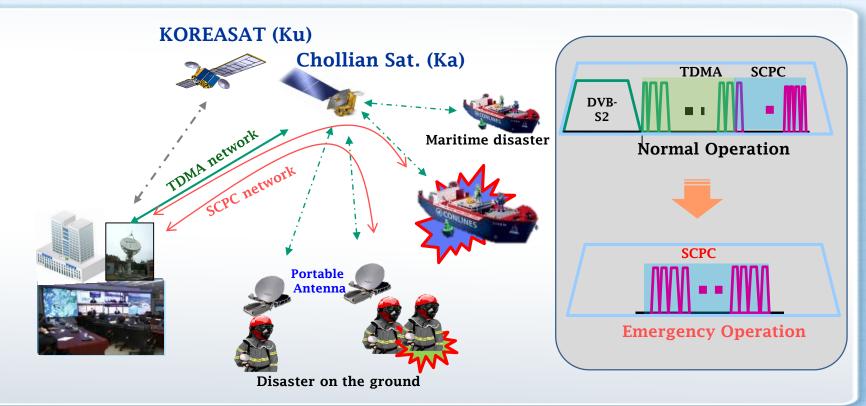
ETRI는 지난당 7일부터 10일 등0

느때여의 천리안 위성을 이용해 캠 더 여상 및 아까지 두 여상자수 시험

H네저희 어떤데 정소 등 DOR

TDMA) 방식으로 구현했다.

유준규 책임연구원(위쪽부터 시계방향)이 2세대 VSAT(초소형기지국) 시 스템을 테스트하고 있다


☆ 십MR에서 100MR급으로 행

Development and Future plan (4/4)

Future plan

- VSAT System supporting high operational efficiency for TDMA and SCPC hybrid networks
 - Integrated management scheme for TDMA/SCPC
 - Return Link transmission using Spread Spectrum

