

Microgrid Testbed

2017.07.13.

Leading the 4th Industrial revolution ICT Innovator

IL-WOO, LEE IoT Convergence Research Department Hyper-connected Communications Research Lab.

Contents

01. Energy Issues
02. Wind of Change
03. Energy ICT R&D
04. Microgrid Testbed: ETRI

1. Energy Issue in Korea

-Demand side: "Energy Saving_ / -Supply side: "Decarbonization, Decentralization_

1. Energy Issue in Korea

Energy source change : Nuclear/Coal \rightarrow Renewable with ESS

2. Wind of Change/Requirement

Energy ICT Platform based on ICBMS (IoT/Cloud/Big Data/Mobile/Security)

Social Factors

- Improving the QoL → increase energy demand, require high quality
- Decarbonized Power plant → difficulty in supply-oriented supply & demand planning and deployment
- Increasing energy efficiency → need to optimal energy supply & demand planning/Demand side management

Environmental Factor

- Global action to reduce greenhouse gas emission → increase electric vehicle (EV), Distributed Energy Resources (DERs)
- Continuous increase of energy demand → demand for consumer, building energy efficiency

Technical Factors

- Difficulty in demand forecasting & increase in DERs → need to deal with uncertainty, system instability
- Interconnect with DERs → need to integrate various energy resources/optimal operation
- Passive consumer

 Active consumer, Transformed into Market
 Participants, E-Prosumer

[Demand Response Market Forecast, Navigant (2014.4.)]

[Distributed Energy Resources Global Forecast, Navigant (2014.3Q.)]

3. Energy ICT R&D

ETRI Approach

Produce Energy)-My(Own Energy)-Me(Energy Saving) & You(Broakerage/Trading) Smart Energy Platform

4. Microgrid Testbed : ETRI

7

Microgrid : a small network of electricity users with a local source (DER) of supply that is usually attached to a centralized national grid

4-1. Testbed 1 : Energy Diet with Smart Plug

"Energy Diet Service with Smart Plug_

- Backgrounds
 - Relatively high energy-use intensity of commercial building
 - Highest energy savings potential of PCs, monitors, and lights in office
 - People' mindset: conserving energy is inconvenient and requires a sacrifice without a reward.
- Energy Diet Service with Smart Plug
 - Focuses on energy savings of PC, monitor, and light in office
 - Provides intelligent and convenient energy-saving service without user intervention
 - Provides fine-grained energy management service
 - Provides automated reward management service to motivates users to save energy

[DOE Technical report D498: 224; 2010.]

4-1. Testbed 1 : Energy Diet with Smart Plug

"Energy Diet Service with Smart Plug_"

Goal

To manage and reduce energy consumption in a convenient and finegrained manner in an office environment

To promote energy savings through automated reward management

4-1. Testbed 1 : Energy Diet with Smart Plug

"Energy Diet Service with Smart Plug_

Features

Fine-grained Energy Management

Smart Plug with Low power/high reliability sub-GHz wireless Network (SUN) Energy consumption monitoring of individuals or each device

Convenient, Intelligent Energy Saving

Energy saving without user intervention

Automated power control of individual's PC, monitor, shared office equipment and ceiling light according to user's movement

Automated Reward Management

Estimating user's effort to save energy: turning off PC and monitor, taking stairs

Benefits

Low-cost, user-friendly energy saving service

Low-cost to build infrastructure, Energy management service for users

Positive motivating the behavior of energy saving

Mindset modification to save energy in office

4-2. Testbed 2 : Renewable Energy Monitoring 4

CC-PLC and Sub-GHz Technologies for Renewable Energy Monitoring

						Incide and
O Ø HE 12925491125 SEEDAN P × 0 Ø 12925491125 ×						
3-12	4-1	4-2	4.3	44	4.5	4-6
363535	*****					888888
800868						
000000	<u>esess</u>					
naaaaa						000000
V 0.0 (V)	V 33.67 (V)	V 34.12 (V)	V 34.09 (V)	V 34.03 (V)	V 34.18 (V)	V 33.76 (V)
1 0.0 (A)	1 6.63 (A)	I 6.30 (A)	I 6.20 (A)	I 6.18 (A)	1 6.17 (A)	1 6.11 (A)
T 0.0 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)
4-7	4.5	4.9	4-10	4-11	4-12	5-1
						888666
						000000
						000000
	000000		000000			000000
			88888 5			665555
V 34.37 (V)	V 34.12 (V)	V 34.46 (V)	V 34.18 (V)	V 34.40 (V)	V 33.76 (V)	V 0.0 (V)
I 6.11 (A)	1 6.28 (A)	1 6.22 (A)	I 5.89 (A)	I 6.31 (A)	1 6.11 (A)	(A) 0 0
T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.00 (C)	T 0.0 (C)

- System Configuration
 - 30kW Photovoltaic (PV)
 - Low-cost PLC modules covering 4-panels at a time
 - Low-cost wireless Sub-GHz modules for monitoring at panel level
 - RTU for gathering monitoring data
 - Ethernet hub for sending data to cloud
 - PC for displaying the monitoring data
- User-friendly Remote Monitoring
 - Easy monitoring through consumer devices including PC and smart-phone
 - Achieving quick detection of faults of a renewable resource causing energy production reduction
 - Possible to reduce whole-life cost

4-2. Testbed 2 : Renewable Energy Monitoring 4

4-2. Testbed 2 : Renewable Energy Monitoring 4

[©] DC-PLC and Sub-GHz Technologies for Renewable Energy Monitoring₁

Features

- Using Low-Cost Techniques and Covering 4 Modules at a Time Obtaining high cost-efficiency suitable for renewable resources with rapid growth
- Supporting Module-level Monitoring
 Detecting quickly faults reducing energy production
 Improving maintenance efficiency

Benefits

- Providing Infrastructure for Hyper Connectivity and Energy Information through Wired/Wireless Communication Convergence Technology
 Providing monitoring technology based on wired/wireless communication for various environment such as region/property/scope/QoS
- Enhancement of Maintenance of Distributed Energy Resources and Upgrading of Added-Value Creation

¹³ Providing maintenance upgrade by achieving efficient upkeep through module-level monitoring Building a premium (value-added) renewable energy infrastructure for Chinese low-priced PV system

4-3. Testbed 3 : DER Optimal Operation 4

"Energy Storage System (ESS) Optimal-Economic Scheduling_

- Microgrid Energy Management System (MG EMS)
 - Objective: Data Collection, Visualization, Analysis, and Management
- Individual Microgrid Energy Management System (Intra-MG EMS)
 - Energy management system that manages DERs in the individual microgrid
- Multi Microgrid Energy Management System (Inter-MG EMS)
 - Energy management system that manages several grid-connected microgrids
- Energy Storage System (ESS)
 - Enables load shifting based on its energy storing capability
 - Helps to reduce power usage cost of the grid-connected microgrid under the time-of-use (TOU) price plan
- ESS Optimal-Economic Scheduling
 Minimizing the electricity bill by controlling the ESS optimally

4-3. Testbed 3 : DER Optimal Operation 4

[[]Energy Storage System (ESS) Optimal-Economic Scheduling_

Goal

DER Optimal Control Scheduling Technology that improves the DER power usage and reduces the grid power usage cost through the optimal control for DERs in the grid-connected microgrid

4-3. Testbed 3 : DER Optimal Operation 4

"Energy Storage System (ESS) Optimal-Economic Scheduling_

Features

DER Optimal-Economic Control

Optimal control scheduling for the ESS within the grid-connected microgrid to maximize its economic profit

Considering the Internal Conditions of the Grid-Connected MG

Optimal control scheduling that is subject to the internal conditions of the microgrid such as the load power consumption. PV power generation, and ESS energy/power capacity

Considering the External Conditions of the Grid-Connected MG Optimal control scheduling that is subject to the external conditions of the microgrid such as the price plan, peak control event, and DR event

Benefits

Microgrid Side: Improved DER Usage

Maximized DER power usage as a result of the optimal control

Microgrid Side: Cost Reduction

Reduced grid power usage cost through the optimal control of DERs

Grid Side: Power Demand Reduction during Peak Hours Reduced power demand during peak hours as a result of the microgrid economic scheduling

Young Forty, Let's Move!

