# Introduction to Energy Trading and Global Trends

KAIST Electrical Engineering Ph. D. Sangdon Park (Sangdon.Park@kaist.ac.kr)

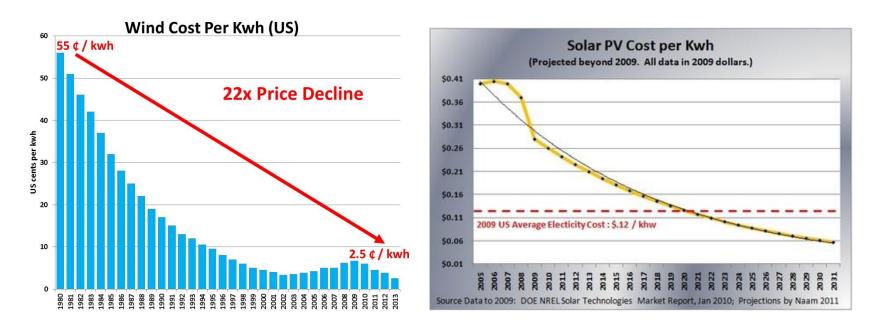


### **Introduction to Energy Prosumer**

#### Energy prosumer

- The term prosumer is a combination of **Producer** and **Consumer**.
- An energy prosumer is a person who consumes energy directly while producing energy.
- If energy production is higher than consumption, producer mode is used.
- Consumption mode is changed to consumer mode when energy consumption is higher than production.






## Background of Energy Trading (1/2)



### Economic factor

- > The price of renewable energy decreases.
- Especially, unit prices for wind power and solar power generation are falling significantly.



# Background of Energy Trading (2/2)



### Environmental factor

The need to raise awareness of the environment caused by climate change and secure the right to self-government of energy has been highlighted.

#### Technical factors

Renewable energy, batteries, electric vehicles, and ICT technologies are driving the spread of energy trading technology.



By the year **2020** 

\*Business As Usual



### **Business Model for Energy Trading in Korea**



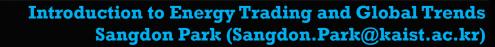
### Town Type

The town type is a business model in which a prosumer located in a certain area sells electricity remaining in nearby electric consumers by utilizing KEPCO's electric power facilities under the intermediary of KEPCO.

### Apartment Type

Apartment type is a business model in which a resident of a high-voltage comprehensive contract apartment unit installs a new and renewable power source through joint investment and allocates the generated electricity to an equal ratio




### **Changing Business for Prosumer**



|                      | Today                                                    |               | Tomorrow                                                                                                 |
|----------------------|----------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------|
| Energy flow          | Unidirectional                                           | $\rightarrow$ | Bidirectional                                                                                            |
| Grid                 | Few to Many, hierarchical                                | -             | Many to many, mazed                                                                                      |
| Parties              | Consumers, Producers<br>Suppliers, Markets, DSO &<br>TSO |               | Consumers, Producers,<br>Prosumers, Broker, Markets<br>DSO & TSO                                         |
| Role of customer     | Energy Consumption                                       |               | Consumption, Production, Storage                                                                         |
| Portfolio E-supplier | Energy Supply, Trade<br>Customer care & Billing          |               | Risk management, Balancing,<br>Settlement, Trade, Customer Care &<br>Billing, Asset management, Advisory |
| End user Price       | Fixed , fuel based                                       |               | Volatile, weather based                                                                                  |
| Risk at              | Supplier                                                 | -             | Prosumer, Broker                                                                                         |
| Margin based on      | Revenue- Energy costs-<br>internal costs                 |               | Balancing/Risk management,<br>Transaction based margin                                                   |
| Forecasting          | Relevant for supplier                                    | -             | Relevant for Prosumer & Broker                                                                           |

Changing business characteristics – the business transformation ahead

Source: Peter Hermans (2011)



### **Energy Trading Trends Overseas**

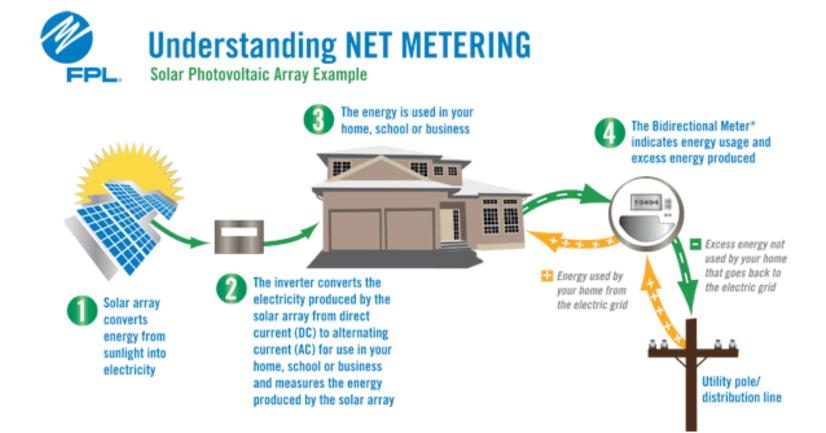
- > EU's SCANERGY Project<sup>[1]</sup>
  - A scalable and modular system for energy trading between prosumers
  - SCANERGY system enables the smart energy trade between prosumers, while coping with the inherent real-time dynamism in electricity demand and supply.
- Ready4SmartCities<sup>[2]</sup>
  Keady4SmartCities<sup>[2]</sup>
  Design4Energy
  Design4Energy
  Energy



### **Energy Trading Trends Overseas**

#### Online Platform for Interpersonal Electricity Trading

#### Piclo (England), Vandebron (Netherlands), SonnenCommunity (Germany)


ONZE ENERGIEBRONNEN OVER ENERGIE OVER ONS SERVICE & CONTACT

vandebron

What is the sonnenCommunity? Jouw verbruik: wijzig ∧ 1.200 m<sup>3</sup> - 2.850 kWh future. As a member you can share your self-produced energy with other members of the sonnenCommunity. Since Nederlands aardgas you are exclusively using energy from the community, there is no need for a conventional energy pro Kies de energiebron die bij je past en Vandebron zorgt dat je geld bij deze bron terecht komt Uitgelicht Windenergie van Windpark Windenergie van Windpark Zonne-energie van Solar Campus Kneesweg, Anna Paulowna Roggeplaat, Burgh-Haamstede Purmerend, Purmerend Introducing Piclo® 1 392 Bespaar € 142.15 1. 77 Bespaar € 142.32 1: 927 Bespaar € 124.91 116,58 116,56 € 118,01 Beschikbaar per laar per jaar Beschikbaar per laar Piclo<sup>®</sup> is a new kind of marketplace that enable households and businesses per mnd per mnd per mnd indenergie uit Molkwerum Windenergie van windpark A4 Windenergie van Arie Noordermeer Weterinabrua Molkwerum Middenmee 1 673 Bespaar € 135 42 1 20 Bespaar € 128.35 116 Bespaar € 128,35 117,14 117,73 117,73 Beschikbaar Beschikbaar per laar Beschikbaar per Jaar per laar per mpd per mno

### **Energy Trading Trends Overseas**

US Net-Metering System





# Example of need policy for activating prosumer<sup>10</sup>

### International Energy Agency (IEA)

Due to lack of conditions, it is expected that prosumer will appear in the next few years

#### Compensation system

> All sale / purchase or hybrid net metering etc.

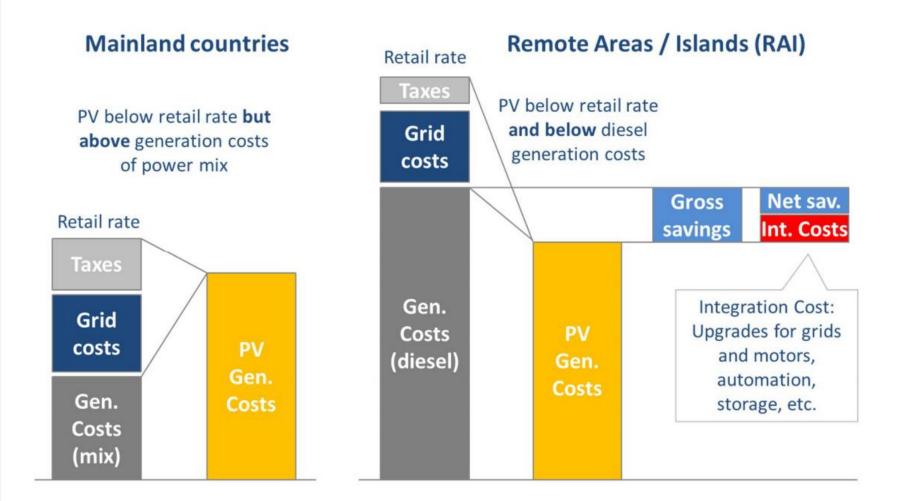
### Fee design

Time-based differential rate system, electricity rate system with no basic fee, etc.

#### Revenue guarantee

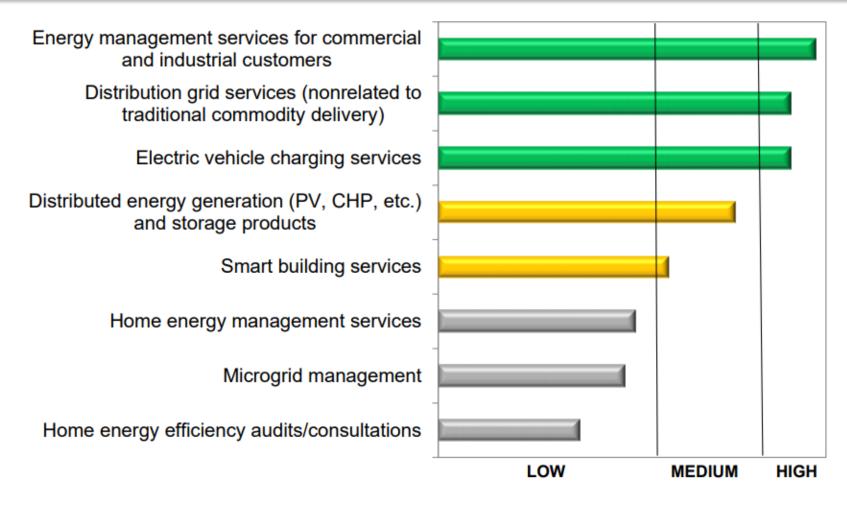
> decoupling of utility income, loss preservation system, etc.

#### Market structure


allowing peer-to-peer power sharing, facilitating new business models

### Tax Reform

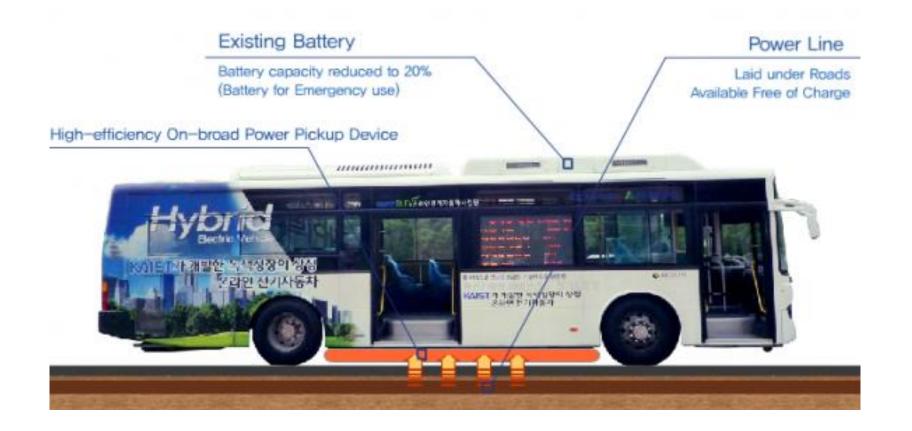
> tax benefits for solar systems or investments




# Electricity cost comparison mainland country vs. RAI



KAIST


### **New Revenue Stream Generators in European Utilities**\*



\* IDC Energy Insights, "Designing the New Utility Business Models" (2015.10)



### (KAIST OLEV) Introduction





Introduction to Energy Trading and Global Trends Sangdon Park (Sangdon.Park@kaist.ac.kr)

13

# (KAIST OLEV) Commercialization

KAIST Shuttle in KAIST, Pilot service in Gumi/Sejong City with Dongwon OLEV

### > Advantages

- Non-contact wireless charging system, there is no danger of electric shock accident.
- Convenient and highly usable buses that can be charged without the influence of weather such as snow and rain.
- Proven Economy





# **THANK YOU**



Distributed Energy Management Scheme for future Power Grid Media Network Laboratory, Sangdon Park (Sangdon.Park@kaist.ac.kr)